Incorporating Lexical Priors into Topic Models

نویسندگان

  • Jagadeesh Jagarlamudi
  • Hal Daumé
  • Raghavendra Udupa
چکیده

Topic models have great potential for helping users understand document corpora. This potential is stymied by their purely unsupervised nature, which often leads to topics that are neither entirely meaningful nor effective in extrinsic tasks (Chang et al., 2009). We propose a simple and effective way to guide topic models to learn topics of specific interest to a user. We achieve this by providing sets of seed words that a user believes are representative of the underlying topics in a corpus. Our model uses these seeds to improve both topicword distributions (by biasing topics to produce appropriate seed words) and to improve document-topic distributions (by biasing documents to select topics related to the seed words they contain). Extrinsic evaluation on a document clustering task reveals a significant improvement when using seed information, even over other models that use seed information naı̈vely.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adapting Topic Models using Lexical Associations with Tree Priors

Models work best when they are optimized taking into account the evaluation criteria that people care about. For topic models, people often care about interpretability, which can be approximated using measures of lexical association. We integrate lexical association into topic optimization using tree priors, which provide a flexible framework that can take advantage of both first order word ass...

متن کامل

SPRITE: Generalizing Topic Models with Structured Priors

We introduce SPRITE, a family of topic models that incorporates structure into model priors as a function of underlying components. The structured priors can be constrained to model topic hierarchies, factorizations, correlations, and supervision, allowing SPRITE to be tailored to particular settings. We demonstrate this flexibility by constructing a SPRITE-based model to jointly infer topic hi...

متن کامل

Sentence Subjectivity Detection with Weakly-Supervised Learning

This paper presents a hierarchical Bayesian model based on latent Dirichlet allocation (LDA), called subjLDA, for sentence-level subjectivity detection, which automatically identifies whether a given sentence expresses opinion or states facts. In contrast to most of the existing methods relying on either labelled corpora for classifier training or linguistic pattern extraction for subjectivity ...

متن کامل

Exploiting Conversation Structure in Unsupervised Topic Segmentation for Emails

This work concerns automatic topic segmentation of email conversations. We present a corpus of email threads manually annotated with topics, and evaluate annotator reliability. To our knowledge, this is the first such email corpus. We show how the existing topic segmentation models (i.e., Lexical Chain Segmenter (LCSeg) and Latent Dirichlet Allocation (LDA)) which are solely based on lexical in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012